Alibaba Corporate Campus Xixi Hangzhou China

Alibaba opens access to privacy-preserving computation technologies

Alibaba DAMO Academy, the global research initiative by Alibaba Group, announced it has made the source code of its latest federated learning platform FederatedScope, a comprehensive platform with easy-to-use packages, access to the open-source community.

With the rise of machine learning in the digital era, gathering training data to build and advance AI models is increasingly under the spotlight as the process could pose potential privacy concerns. To address such challenge, federated learning — a way of privacy-preserving computation –– has emerged. By coordinating the training of micro-tasks across different end devices, intermediate training results, rather than raw user data, are fed back to the cloud server to alleviate privacy concerns. Yet it still enables data analytics and machine learning tasks across end devices.

“By sharing our self-developed federated learning technologies with the open-source community, we hope to promote the research and industrial deployment of privacy-preserving computation in different sectors, such as healthcare and smart mobility that usually involves sensitive user data and requires strict privacy protection practices,” said Bolin Ding, research scientist at Alibaba DAMO Academy.

Alibaba Cloud opens up IoT technology platform to developers
Alibaba Cloud’s new server chips designed to help optimize cloud computing

In addition, with a newly implemented event-driven framework, FederatedScope provides flexible support and comprehensive tools including a rich collection of benchmark datasets, well-known model architectures, advanced federated learning algorithms, easy-to-use automatic tuning functionalities, and friendly interfaces. These enable researchers and developers to quickly build and customize task-specific federated learning applications in areas including computer vision, natural language processing, speech recognition, graph learning, and recommendation.

For privacy protection, in particular, the platform also offers cutting-edge technologies including differential privacy and multi-party computation to meet different requirements of privacy protection.

“We believe privacy-preserving computation is an important and essential trend,” said Ding. “Training AI models without compromising privacy is critical, and that’s why we have devoted a lot of resources to drive the research of federated learning. We hope that by sharing our source codes and technology platform, we can support global developers in the community and encourage more innovation in this emerging field.”

Categories: Uncategorized

Tagged as: , , , ,